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Differential Involvement of Protein Kinase C in Basal
Versus Acetylcholine-Regulated Prolactin Secretion
in Rat Anterior Pituitary Cells During Aging
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Taiwan, Republic of China

Abstract Although it is well known that plasma concentration of prolactin (PRL) increases during aging in rats,
how the anterior pituitary (AP) aging per se affects PRL secretion remains obscure. The objectives of this study were to
determine if changes in the pituitary PRL responsiveness to acetylcholine (ACh; a paracrine factor in the AP), as
compared with that to other PRL stimulators or inhibitors, contribute to the known age-related increase in PRL secretion,
and if protein kinase C (PKC) is involved. We also determined if replenishment with aging-declined hormones such as
estrogen/thyroid hormone influences the aging-caused effects on pituitary PRL responses. AP cells were prepared from
old (23–24-month-old) as well as young (2–3-month-old) ovariectomized rats. Cells were pretreated for 5 days with
diluent or 17b-estradiol (E2; 0.6 nM) in combination with or without triiodothyronine (T3; 10 nM). Then, cells were
incubated for 20 min with thyrotropin-releasing hormone (TRH; 100 nM), angiotensin II (AII; 0.2–20 nM), vasoactive
intestinal peptide (VIP; 10�9–10�5 M), dopamine (DA; 10�9–10�5 M), or ACh (10�7–10�3 M). Cells were also
challenged with ACh, TRH, or phorbol 12-myristate 13-acetate (PMA; 10�6 M) following PKC depletion by prolonged
PMA (10�6 M for 24 h) pretreatment. We found that estrogen priming of AP cells could reverse the aging-caused effects
on pituitary PRL responses to AII and DA. In hormone-replenished cells aging enhanced the stimulation of PRL secretion
by TRH and PMA, but not by AII and VIP. Aging also reduced the responsiveness of cells to ACh and DA in suppressing
basal PRL secretion, and attenuated ACh inhibition of TRH-induced PRL secretion. Furthermore, ACh suppressed TRH-
induced PRL secretion mainly via the PMA-sensitive PKC in the old AP cells, but via additional mechanisms in young AP
cells. On the contrary, basal PRL secretion was PKC (PMA-sensitive)-independent in the old AP cells, but dependent
in the young AP cells. Taken together, these results suggest differential roles of PMA-sensitive PKC in regulating basal
and ACh-regulated PRL responses in old versus young AP cells. The persistent aging-induced differences in AP cell
responsiveness to ACh, DA, TRH, and PMA following hormone (E2/T3) replenishment suggest an intrinsic pituitary
change that may contribute, in part, to the elevated in vivo PRL secretion observed in aged rats. J. Cell. Biochem. 86:
268–276, 2002. � 2002 Wiley-Liss, Inc.
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Age-related increases in prolactin (PRL) gene
expression and secretion as well as in the per-
cent of lactotropes have been reported in the rat
anterior pituitary (AP) [Chuknyiska et al.,
1986; Larson andWise, 1991; Rossi et al., 1993;
Tan et al., 1997]. Plasma and pituitary concen-
trations of PRL are elevated in old as compared
with young rats [Haji et al., 1984; Tan et al.,
1997]. Increases in plasma PRL concentrations
first become detectable in middle-aged cycling
and non-cycling rats, and continue to increase
with aging [Wise, 1982, 1984; Demarest et al.,
1985]. How the aging of AP per se affects PRL
secretion remains obscure.
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Secretion of PRL by the AP is mainly un-
der the hypothalamic dopamine (DA) inhi-
bition. It is also stimulated by hypothalamic
thyrotropin-releasing hormone (TRH). Other
inhibitoryandstimulatory factorssynthesized in
the pituitary and hormones present in the circu-
lation (i.e., estrogens and thyroid hormones) also
affect PRL secretion [Maurer, 1982; Carmeliet
et al., 1989; Dymshitz et al., 1992; Ray and
Melmed, 1997; Bruhn et al., 1998; Cai et al.,
1998; Kanyicska et al., 1998; Pu et al., 1999].
Among the autocrine/paracrine factors in the
pituitary, angiotensin II (AII) and vasoactive
intestinal peptide (VIP) have been shown to sti-
mulate, and acetylcholine (ACh) to inhibit PRL
secretion [Rudnick and Dannies, 1981; Carme-
liet et al., 1989; Balsa et al., 1996; Dı́az-Torga
et al., 1998; Pu et al., 1999]. Recently, we have
further demonstrated that the suppression by
ACh of both basal and TRH-induced PRL secre-
tion was enhanced in a 17b-estradiol (E2)- and
triiodothyronine (T3)-dependent manner in AP
cells prepared from ovariectomized young rats
[Pu et al., 1999]. Furthermore, multiple intra-
cellular pathways including nitric oxide are dif-
ferentially involved in ACh actions on these two
PRL responses in AP cells [Pu et al., 1999]. In
this article, we investigated the mechanisms
involved in aging-enhanced PRL secretion. We
studied if changes in the pituitary responsive-
ness to ACh, as compared with that to AII, VIP,
or DA, contribute to the known aging-related
increase inPRLsecretion,and ifproteinkinaseC
(PKC) is involved. We also determined if replen-
ishment with aging-declined hormones such as
estrogen/thyroid hormone [Mariotti et al., 1995;
Lamberts et al., 1997] influences the aging-caus-
ed effects on pituitary PRL responses. Our data
revealed persistent aging-induced differences in
AP cell responsiveness to ACh, DA, TRH, and
phorbol 12-myristate 13-acetate (PMA) follow-
ing hormone (E2/T3) replenishment. This sug-
gests an intrinsic pituitary change that may
contribute, in part, to the elevated in vivo PRL
secretion observed in aged rats. Furthermore,
PMA-sensitive PKC appears to be differentially
involved in basal as opposed to ACh-regulated
PRL secretion during pituitary aging.

MATERIALS AND METHODS

Animals and Pituitary Cell Cultures

Young cycling (2–3months) and old diestrous
(23–24 months) female Sprague-Dawley rats

were purchased from National Yang-Ming Uni-
versity Animal Center. They were maintained
under temperature (22� 28C) and light (lights
on: 0600–2000 h) controlled conditions with
free access to food and water. Rats were bila-
terally ovariectomized under ether anesthesia
and decapitated by a guillotine 4 days later. Old
rats with visible, enlarged, and hemorrhagic
pituitary tumors were not included in the
studies. Anterior pituitaries (APs)were excised,
dispersed into single cell suspension as des-
cribed previously [Liu and Jackson, 1987]. The
tissue fragments were sliced and dissociated by
collagenase and hyaluronidase after a brief ex-
posure to trypsin. Routinely, the dispersed cells
were cultured (2� 105 cells/ml/well) in 24-well
plate (Falcon, Lincoln Park, NJ) overnight at
378C under moist 5% CO2 and 95% air. The
culture medium contained 2.5% FBS (Hyclone
Laboratories, Logan, Utah) and 10% bovine calf
serum (Hyclone) in supplemented medium-199
without phenol red (weak estrogen). All sera
were pretreated with dextran-charcoal to re-
move small molecules including steroids and
thyroid hormones [Liu et al., 1993].

Incubation With Test Drugs

As specified in each experiment, overnight
cultured AP cells were treated for 3 days with
either E2 (Sigma, St. Louis, MO; 0.6 nM), or E2

plus T3 (Sigma; 10 nM). Then cells were washed
and incubated at 378C in sera-free medium
containing 1%BSA (Sigma) and initial hormone
treatments for additional 2 days, with medium
changed each day. Subsequently, cells were
washed, then challengedat 378C for 20minwith
PRL regulators in the sera-free medium con-
taining 1% BSA without hormone treatments.
Cells were also pretreated with phorbol 12-
myristate 13-acetate (PMA, 10�6 M, a PKC
activator) for 24 h to deplete PKC before
challenge with PRL regulators. At the end of
incubation, the medium was collected, centri-
fuged, and stored at �208C for measuring PRL
by RIA. The PRL regulators used included
ACh (10�7, 10�5, 10�3 M), TRH (100 nM), PMA
(10�6 M), AII (0.2, 2, 20 nM), DA (10�9, 10�7,
10�5 M), and VIP (10�9, 10�7, 10�5 M), all
obtained from Sigma.

RIA for PRL

PRL RIA kit, kindly provided by the National
Hormone and Pituitary Program of NIDDK
(Torrance, CA) and Dr. Parlow, was used to
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measure PRL in themedium. The standard was
rPRL-RP-3 (lot no. AFP-4459B), the iodinated
PRLwas rPRL-I6 (lot no. AFP-10505B), and the
antibody was anti-rPRL-IC-5 (lot no. AFP425-
10-91). The sensitivity of the assay was 30 pg/
tube/ml assay volume. The intra- and inter-
assay coefficients of variation were 9.0 and
14.5%, respectively [Tan et al., 1997].Datawere
expressed as nanogram PRL/well/20 min.

Experimental Design and Statistical Analysis

In each experiment, approximately 20 APs
were pooled for the preparation of one batch of
AP cells. Aliquots of each cell batch were placed
in separate wells, and drug treatments were
randomly assigned to each well. Each experi-
ment was replicated at least three times. The
effects of drugs onPRL secretionwere expressed
as fold of control (without drug) in respective old
oryoungcells.Due toheterogeneity of error [Tan
et al., 1997], data were subjected to logarithmic
transformation before statistical analysis by one
way ANOVA using the SAS system (SAS Insti-
tute, Inc.,Cary,NC).Multiple comparisonswere
performed according to the Fisher’s least sig-
nificant difference (LSD) test, where ANOVA
was significant [Steel and Torrie, 1980]. All data
were expressed as mean�SEM. Differences be-
tween means were considered significant when
P< 0.05, and highly significant when P< 0.01.

RESULTS

Effects of Aging on AII- and
VIP-Enhanced PRL Secretion

These experiments were performed in AP
cells pretreated with or without E2 for 5 days
before challenge with AII and VIP for 20 min.
Both AII (0.2, 2, 20 nM; Fig. 1) and VIP (10�9,
10�7, 10�5 M; Fig. 2) dose-dependently stim-
ulated PRL secretion in AP cells from either
young or old rats, regardless of E2 priming.
However, in the absence ofE2 (Fig. 1, left panel),
the PRL releasing abilities for all three doses of
AII were significantly attenuated (P< at least
0.05) in the old as compared with the young AP
cells. By contrast, in the presence of E2 (Fig. 1,
right panel), the differences between the two
groups of cells were completely abolished. For
VIP-stimulated PRL secretion, there were no
significant differences at the three VIP doses
between the two age groups of cells, either in
the absence of E2 (Fig. 2, left panel), or in the
presence of E2 (Fig. 2, right panel).

Effect of Aging on DA-Suppressed
PRL Secretion

AP cells were pretreated with or without E2

before challenge with DA (10�9, 10�7, 10�5 M).

Fig. 1. Effect of aging on angiotensin II (AII)-enhanced PRL
secretion. Anterior pituitary (AP) cells (2� 105 cells/ml/well)
prepared from 4-day ovariectomized young or old rats were
cultured for 5 days in the presence or absence of 0.6 nM E2 as
described in Materials and Methods. Then cells were washed
and challenged for 20 min without (vehicle; V) or with AII
(0.2, 2, 20 nM) in sera-free medium containing 1% BSA in the
absence of E2. Vehicle-treated young or old cells, with or with-
out E2-priming, serve as controls for respective AII-treated cells.
Data are expressed as fold of respective controls. Each point
represents the mean� SEM of three experiments with triplicate
cultures per drug treatment per experiment. *P< at least 0.05:
AII versus respective control; þP< 0.05, þþP<0.01: old versus
respective young.

Fig. 2. Effect of aging on VIP-enhanced PRL secretion. See
legend to Figure 1. AP cells were pretreated with or without E2
for 5 days. At the end of culture, cells were washed and then
challenged for 20 min without (vehicle; V) or with VIP (10�9,
10�7, 10�5 M) in sera-free medium containing 1% BSA in the
absence of E2. Each point represents the mean� SEM of three
experiments with triplicate cultures per drug treatment per
experiment. *P< at least 0.05: VIP versus respective control.
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DAdose-dependently suppressedPRLsecretion
in AP cells from either young or old rats, ir-
respective of E2 (Fig. 3). However, in the ab-
sence of E2 (Fig. 3, left panel), the suppression
byDAat both 10�7 and 10�5M onPRL secretion
was greater (P< 0.01) in the old than in the
young AP cells. Interestingly, E2 pretreatment
caused the AP cells to become less (P< 0.05)
responsive to 10�7 M DA in the old as compared
with the young cells (Fig. 3, right panel).

Effect of Aging on E2-Stimulated
PRL Secretion

For youngAP cells, basal PRL secretion inE2-
unprimed and E2-primed cells were 18.3� 1.0
and 39.6� 1.7 ng/well/20 min (n¼ 9), respec-
tively. The fold stimulation by E2 was 2.2� 0.2
(P< 0.01). For old AP cells, basal PRL secre-
tion in E2-unprimed and E2-primed cells were
37.9� 2.1 and 66.4� 2.3 ng/well/20 min (n¼ 9),
respectively. The fold stimulation by E2 was
1.7� 0.1 (P< 0.05). There was no significant
difference on fold of E2 stimulation between the
old and the young AP cells.

Effect of Aging on ACh-Suppressed
PRL Secretion

The action of ACh on PRL secretion was
examined in the absence (Fig. 4, left panel) or
presence (Fig. 4, right panel) of TRH in E2þT3

pretreated AP cells [Pu et al., 1999]. ACh (10�7,

10�5, 10�3 M) dose-dependently inhibited both
basal (Fig. 4, left panel) and TRH-induced PRL
secretion (Fig. 4, right panel), regardless of
aging. However, the sensitivity to low ACh dose
(10�7 M) for suppressing basal PRL secretion
was significantly less (P< 0.05) in the old as
compared with the young AP cells. Further-
more, the maximal suppression by a high ACh
dose (10�3 M) on TRH-induced PRL secretion
was also significantly attenuated (P< 0.01) in
the old as opposed to the young AP cells.

Effects of Aging on TRH- and
PMA-Stimulated PRL Secretion

AP cells were pretreated with E2þT3, and
then challenged with or without TRH or PMA
for 20 min. The magnitude of basal PRL secre-
tion in old AP cells was approximately 1.9-fold
of that in young cells (118.4� 14.1 vs. 61.2�
6.9ng/well/20min, respectively,n¼ 6,P< 0.01),
an observation similar to our previous studies
[Tan et al., 1997]. The fold stimulation on basal
PRL secretion in response to a maximum dose
of TRH (10�7M)was significantly greater in the
old than in the young AP cells (4.0� 0.4 vs.
2.4� 0.3 fold, respectively, n¼ 6, P< 0.01;
Fig. 5B). Likewise, the fold stimulation in
response to PMA (10�6 M) on basal PRL secre-
tion was significantly higher in the old than in

Fig. 3. Effect of aging on DA-suppressed PRL secretion. See
legend to Figure 1. AP cells were pretreated with or without E2
for 5 days. At the end of culture, cells were washed and then
challenged for 20 min without (vehicle; V) or with DA (10�9,
10�7, 10�5 M) in sera-free medium containing 1% BSA in the
absence of E2. Each point represents the mean� SEM of three
experiments with triplicate cultures per drug treatment per
experiment. *P< at least 0.05: DA versus respective control;
þP<0.05, þþP< 0.01 old versus. respective young.

Fig. 4. Effect of aging on ACh-suppressed PRL secretion. All AP
cells were pretreated with 0.6 nM E2 plus 10 nM T3 for 5 days.
Then, cells were washed and treated for 20 min without
(vehicle; V) or with ACh (10�7, 10�5, 10�3 M) in the presence or
absence of TRH (100 nM) in sera-free medium containing 1%
BSA without E2/T3. Vehicle-treated young or old cells, with or
without TRH stimulation, serve as controls for respective ACh-
treated cells. Data are expressed as fold of respective controls.
Each point represents the mean� SEM of three experiments
with triplicate cultures per drug treatment per experiment. *P<
at least 0.05: ACh versus respective control; þP< 0.05,
þþP< 0.01: old versus respective young.
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the young AP cells (2.7� 0.2 vs. 2.1� 0.2 fold,
respectively, n¼ 6, P< 0.01; Fig. 5A).

Effects of PKC Depletion on Basal,
TRH-Stimulated and ACh-Suppressed PRL
Secretion in Old Versus Young AP Cells

E2þT3 cultured old or young AP cells were
pretreated with PMA (10�6 M) for 24 h to
deplete cellular PMA-sensitive PKC. Then cells
were challenged with either ACh (10�3 M) or
PMA (10�6 M) in the absence (Fig. 5A) or

presence (Fig. 5B) of TRH (10�7 M) for 20 min.
In PMA-pretreated cells, the second challenge
dose of PMA was unable to elicit PRL secretion,
regardless of age or TRH (Fig. 5 A,B, compari-
son 1), confirming the depletion of PMA-sensi-
tivePKC.Notably, PKCdepletion reducedbasal
PRL secretion in the young (P< 0.01) AP cells,
but not in the old ones (Fig. 5A, comparison 2).
PKC depletion also decreased (P< 0.01) the
TRH-induced PRL secretion in both young and
old AP cells (Fig. 5B, comparison 3); however,
the percent decrease was greater in the young
than in the old AP cells (61.3� 4.7% vs. 51.6�
1.7%, respectively,P< 0.01).Nevertheless, both
young and old cells remained responsive to TRH
under PKC depletion conditions (Fig. 5; vehicle
group in panel B vs. respective vehicle group in
panel A; P< 0.01). We further found that PKC
depletionblockedAChsuppression of basalPRL
secretion in either young or oldAP cells (Fig. 5A,
comparison 4), but eliminated ACh suppression
of TRH-induced PRL secretion only in the old
AP cells (Fig. 5B, comparison 5). The fold of
ACh suppression in the young and old AP cells
were 46.2� 6.2% vs. 17.9� 8.0%, respectively
(P< 0.01).

DISCUSSION

We have demonstrated that in hormone
(E2þT3 or E2) replenished AP cells aging at-
tenuatedACh- andDA-inhibitedPRL secretion.
Aging also enhanced PRL secretion induced by
either TRH or PMA but not by AII or VIP.
Furthermore, aging altered basal PRLsecretion
from PKC (PMA-sensitive)-dependent manner
to the PKC (PMA-sensitive)-independent man-
ner. Aging downregulated multiple intracellu-
lar pathways responsible for ACh suppression
of TRH-induced PRL secretion to the PKC
(PMA-sensitive)-dependent pathway only. The
persistent aging-induced differences in PRL
responses of AP cells following hormone replen-
ishment suggest an intrinsic pituitary change
that may contribute, in part, to the elevated in
vivo PRL secretion observed in aged rats.

The aging-attenuated ACh suppression of
PRLsecretionaswell as thedifferential involve-
ment of PMA-sensitive PKC in aging-caused
changes of basal PRL secretion versus ACh-
suppressed PRL secretion, to our knowledge,
has not been reported previously.We noted that
following hormone replenishment with E2þT3,
ACh at 10�7 M suppressed basal PRL secretion

Fig. 5. Effects of PMA pretreatment on PRL secretion in old
versus young AP cells. AP cells cultured in medium containing
0.6 nM E2 plus 10 nM T3 for 5 days were pretreated with PMA
(10�6 M) during the last 24 h incubation period to deplete PKC.
Then, cells were washed and challenged for 20 min without any
drug (vehicle; V), or with ACh (10�3 M) or PMA (10�6 M) in the
absence (panel A) or presence (panel B) of TRH (10�7 M). Non-
PMA pretreated young or old cells challenged with vehicle in
the absence of TRH serve as controls. Values are expressed as
fold of respective controls. Each bar represents the mean� SEM
of three to six experiments with triplicate cultures per drug
treatment per experiment. Statistical analyses between the
bracketed two groups are shown as NS (not significant);
*P<0.01. Numbers above the brackets refer to the comparisons
made in Results.
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in the young but not in the old AP cells.
Furthermore, a maximal dose of ACh at 10�3 M
reduced the fold of TRH-stimulated PRL se-
cretion more in the young than in the old AP
cells. These findings suggest an aging-induced
decline in PRL responses to ACh.We also found
that depletion of PMA-sensitive PKC by pre-
treatment of cells with 10�6 M PMA for 24 h
abolished the suppression of basal PRL secre-
tion by ACh, regardless of age. This observation
indicates that in both age groups the PMA-
sensitive PKC plays a critical role in the ACh-
suppressed basal PRL secretion. PKC depletion
also abrogated the suppression byACh (10�3M)
on TRH-induced PRL secretion in the old but
not in the young AP cells. This finding demon-
strates the importance of PMA-sensitive PKC
on ACh suppression of TRH-stimulated PRL
secretion in the old rather than in the young AP
cells. It appears that in the old AP cells ACh
suppresses TRH-induced PRL secretion mainly
via the PKC (PMA-sensitive) pathway. Other
intracellular signals such as the cAMP/Ca2þ

pathways, and the nitric oxide pathway essen-
tial for ACh-regulated PRL secretion in the
young AP cells [Pu et al., 1999] may be down-
regulated in the aged AP cells. Consistent with
this observation, reduction in pituitary phos-
photidylinositol turnoverandcAMP/cAMPbind-
ing protein has been found in aged as opposed to
young rats [Arima, 1982; Tang and Tang, 1983;
Bonetti et al., 1987]. The aging-induced intra-
cellular signaling changes, together with aging-
decreased maximal binding sites for pituitary
high affinity muscarinic receptors [Avissar
et al., 1981] may explain the reduced efficacy
of ACh on inhibiting PRL secretion in old AP
cells. Additionally, we demonstrated that PKC
depletion greatly decreased basalPRL secretion
in the young but not in the old-AP cells. The
PKC (PMA-sensitive) pathway appears to play
an indispensable role in the young-AP cells,
as opposed to a dispensable role in the aged
AP cells, for the maintenance of basal PRL
secretion, suggesting the involvement of other
mechanisms. Nitric oxide has been shown to
suppress basal PRL secretion and is involved
in ACh-regulated PRL secretion [McCann
et al., 1998; Pu et al., 1999]. Recently, we have
observed that the aging-related increase in
pituitary PRL secretion was accompanied by
the declined nitric oxide production in aged AP
cells (unpublished data). This finding seems to
be consistent with the hypothesis that nitric

oxide may cause pituitary aging and affects se-
cretionofhormonesbyAP[McCannetal., 1998].

Our data revealed that aging-altered PRL
response to DA was influenced by the avail-
ability of E2. Following in vitro E2 replenish-
ment the fold of DA (10�7 M) suppression on
PRL secretion was less in the old than in the
young-AP cells. However, in the absence of E2,
DA at both 10�7 and 10�5 M reduced basal PRL
secretion more effectively in the old than in the
young AP cells. Increased PRL responses to DA
observed inE2-unprimedoldAP cells as opposed
to young AP cells may reflect the lack of long
term in vivo E2 stimulation in the old AP cells
rather than aging of the pituitary per se. On the
other hand, aging-induced reduction in PRL
responses to DA noted in E2-primed AP cells
may be attributed to intrinsic changes of pitu-
itary during aging. Larson and Wise [1991],
using AP cells prepared from ovariectomized
cycling old and young rats pretreated with or
without E2 capsule for 4 days, similarly demon-
strated that aging attenuated the inhibitory
effect of DA on PRL secretion by individual
lactotropes.E2 has beenknown to augmentPRL
gene expression [Stone et al., 1977; Maurer,
1982; Borgundvaag et al., 1992; Watters et al.,
2000], the percentage of cells secreting PRL
[Larson andWise, 1991], the intracellular Ca2þ

concentration [Shin et al., 1993], and the PKC
isozyme expression and total activity [Maeda
and Lloyd, 1993]. E2 also reduced DA receptor
[Kochman et al., 1989; Nedvidkova et al., 2001],
DA-inhibited adenylyl cyclase activity aswell as
the expression of inhibitoryG-proteins (Gia3/Go)
in lactotropes [Borgundvaag and George, 1988;
Maus et al., 1989; Livingstone et al., 1998].
Althoughwe did not observe significant effect of
aging on basal PRL secretion stimulated by E2

alone, all of these E2-regulated events may
affect pituitary responsiveness to DA. How
aging alters specific pathways relevant to
DA-inhibition of PRL secretion remains to be
unveiled.

We found that aging enhanced the stimula-
tion of PRL secretion by TRH and PMA, but not
by AII and VIP in hormone-replenished AP
cells. In response to a maximal dose of TRH
(10�7M), PRL secretionwas significantly great-
er in the old than in the young AP cells pre-
treated with E2þT3. This is consistent with
the finding that old cycling rats had a greater
percentage of AP cells secreting PRL than did
young rats under TRH-stimulated conditions
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[Larson and Wise, 1991]. On the other hand,
based on PRL secretion per lactotrope, these
authors reported reduced sensitivity to 10�7 M
TRH in AP cells from old E2-treated rats as
comparedwith youngE2-treated rats.However,
based on the total PRL releasing capability of
the heterogeneous AP cell population, we have
demonstrated aging-enhanced responsiveness
to TRH. The increased density of TRH receptors
observed in the old AP [Donda et al., 1989] is in
agreement with our finding. We also observed
that thePRL response to 10�6MPMA increased
during aging in AP cells. This suggests that
mechanisms at or after PKC activation may be
accentuated in old AP cells. Since PKC is in-
volved in the action of TRH to stimulate PRL
secretion [GershengornandOsman,1996;Akita
et al., 2000], it appears that the aging-caused
changes in the PKCpathwaymay contribute, in
part, to the enhanced TRH effect in old AP cells.

We observed that aging-induced reduction in
PRL responses to AII in E2-unprimed AP cells
could be abolished by E2 replenishment. In E2-
unprimed cells, AII-stimulated PRL secretion
was greater in the young than in the old AP
cells; however, in E2-primed AP cells, aging did
not alter the PRL response to AII. The findings
by Janik et al. [1997] that under E2-deprived
conditions AII failed to stimulate PRL secretion
in agedAPcells but enhancedPRLsecretion ina
dose-related manner in the young AP cells are
in general agreement with our results. E2 is
known to increase the PRL response to AII in
spite of its ability to decrease AII receptor num-
ber in AP cells [Carriere et al., 1986; Pizzi et al.,
1992; De Paul et al., 1997; Krishnamurthi et al.,
1999]. AII receptor coupling to phospholipase C
(PLC) and cross talk to the adenylyl cyclase
pathway have been implicated in mediating
AII-induced PRL release [Enjalbert et al., 1986;
Audinot et al., 1991; Moreau et al., 1994;
Lachowicz et al., 1995]. Reduced PRL response
to AII in aged AP cells without in vitro E2

priming may reflect the insufficiency of in vivo
E2 stimulation to augment intracellular signal-
ing pathways such as PLC and adenylyl cyclase
related to the AII action on PRL secretion.

Aging had no effect on VIP-stimulated PRL
secretion. VIP at 10�9, 10�7, and 10�5 M caused
similar PRL secretion in young and old AP cells
with or without E2 priming in vitro. VIP was
known to stimulate PRL secretion via the cAMP
pathway [Pizzi et al., 1990; Le Pechon-Vallee
et al., 2000]. It has also been reported that aging

decreased pituitary cAMP and cAMP-binding
protein [Arima, 1982]. Our finding that aging
did not alter PRL response to VIP suggests that
the cAMP pathway and VIP may not play a
significant role in the aging-effected high PRL
secretion.
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